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Tidal Laplace equations are considered and the asymptotic form of the eigenvalues corresponding to eigenfunctions (Kelvin 
waves) concentrated in the neighbourhood of a closed component of the boundary are constructed for large values of the Lamb 
parameter, which is proportional to the square of the angular velocity of rotation of the reservoir. The formulae obtained determine 
the asymptotic behaviour of the kth eigenvalue in the case of a planar, simply connected reservoir of constant depth. © 1999 
Elsevier Science Ltd. All rights reserved. 

1. T I D A L  L A P L A C E  E Q U A T I O N S  

Suppose X is a bounded, smooth, orientated surface with an edge and C~(X) and Am(X) are sets of 
smooth complex-valued functions and covector fields in X. We put 

<U, V> = g i J o i v  j ,  (*U) i = Eq(det g)Y2 gqUk 

divU = (detg) -)60-~((detg)JrgiJU)), U, V ~ AI(X) 

Here g/J are the covariant comp .o.nents of the metric surface tensor, det g is the determinant of the matrix 
.{gil} (which is the inverse of {g~J}) and ~11 = e22 = 0, ~12 = -e21 = 1. Summation over repeated indices 
is implied. 

Suppose the space R 3 is rigidly connected with the rotating surface X and that (0, 0, f)) is the vector 
of the angular velocity of rotation and n is the field of the normals to the surface X matched with its 
orientation. The latter means that the vectors (rx 1, rxz, n), where r = r(x ~, x 2) is the parametrization of 
the surface, form a right-hand triad. 

We now consider a particle of unit mass which moves over the surface Xwith an instantaneous velocity 
which is determined by the covector U. Direct verification in local coordinates shows that the expression 
for the Coriolis force acting on it can be rewritten as -2Dpn × U = 2f)p * U. Here p = cos 0, where 0 
is the angte between the normal n and the axis of rotation, × is vector multiplication, and the natural 
identification of the covectors and the tangential vectors to the surface lying in R3: U,--> ~JUjrxi is implied. 

In view of the above relation the tidal Laplace equations [1, 2] take the form 

i~U = p * U - tx- Y2 h V ~, i;Z~ = -tx -)~ div U (1.1) 

Here ~. = o~/(2~) is a spectral parameter, ct = 4f~212.(gh) is a dimensionless parameter (the Lamb 
parameter), co is the frequency of the free oscillations, l is a characteristic dimension, h is the characteristic 
depth and g is the acceleration due to gravity. The dimensionless unperturbed depth of the fluid h 
C°(X) is assumed to be positive: infxh > 0. The quantities (U, ~) determine the velocity flux and the 
elevation of the free surface. 

We define the Hilbert spaces L~, H'I~ as the completion of the sets {cp ~ C~(X) : ~ o d S =  0} using 
the norms which are generated by the scalar products 

(~,W)o = f tp~dS, (~, W),.h = ~ h(Vtp, Vw)dS 

and the space L2~ as the completion of AI(X) using the norm associated with the scalar product 
[U, V]o ~ = ~ h-l(U,  V)dS. Here, dS is an element of area and integration is carried out over the 
surface X. 
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The set of elements U ~ L2~ for which div U ~ L2(X, dS) is denoted by/~. The sign y of the normal 
component is c~X is correctly defined for the elementsof E (compare with [3, p. 101]). If U ~ A1, then 
--yU conforms with the contraction .U in (gX. We put E0 = {U ~ E: 7vU = 0}. 

The eigenvalue problem for the tidal Laplace equations (1.1) with an impermeability condition on 
the boundary reduces to an investigation of the eigenvalue properties of the operator 

in the domain of_definition/~ =/~0 ® H'lh. 
The operator R is self-adjoint. The structure and asymptotic form of its spectrum.are described in 

Theorem 1 from [4]. Here, we note that the spectrum is symmetrical with respect to the origin of the 
coordinate system and consists of the point ;~ = 0 and a denumerable set of eigenvalues of finite 
multiplicity with the limit points __.oo when ph -~ =- const and 0, _+oo when ph -1 ~ const. Variational 
principles for the eigenvalues have been formulated earlier [2, 4, 5]. 

2. ASYMPTOTIC BEHAVIOUR OF THE KELVIN WAVE SPECTRUM 

The asymptotic form of the eigenvalues corresponding to the eigenfunctions concentrated in the 
neighbourhood of the boundary are constructed using the boundary-layer method [6, 7]. Suppose that 
F0 is a component of the boundary of the surface X of length I. In a certain neighbourhood of this 
component, we introduce a semigeodesic system of coordinates (x, s) ~ [0,/] x [0, %), where z is the 
length of the arc F0 and s is the length of the arc of the geodesic which is orthogonal to F0. As x increases, 
the surface remains to the left. 

In the coordinates (x, s), we have g]l = G(x, s), g]2 = g21 = O, g22 = 1, G(z, 0) = 1. Putting U = Uldx + 
U:,ds, we rewrite Eqs (1.1) in the form 

pG Y2u2 _ a_72 h a~ ixu2 = _ p G _ ~ U  l _ a_~h  3~ (2.1) ,%Ui 
Os 

t~ = -CC~G-~(~(G-~U,)+ ~s (G~U2 ) ) 
We now define the stretched variable p = (~1/2s and seek the asymptotic form of the eigenvalues and 

the eigenfunctions in the form 

X ~ a -jA ~, 8.,a -"'2, ; -  ~. ; , . (x .p~ -'''2 (2.2) 
m=O m=0 

UI ~ ~ -m/2 o [ - y  2 - -rot2 uL,.('c.p)c( , u 2 -  E 
m=O m=O 

where the functions (-~n, Ujcn, which can be taken as being defined in the half-plane (z, p) ~ [0, l] × 
[0, +oo), decay exponentially when p ---> + ~  and are/-periodic with respect to x. Furthermore, it 
is assumed that 80 > 0. 

We substitute expressions (2.2) into Eqs (2.1) and equate the coefficients of like powers of or. In the 
principal approximation we have 

iSoUI, o - poU2.o + h o ~ -  = O, PoULo + h o a~0 - p=O (2.3) 
C r l ;  

OU1 o au2 o ^ 
iS0;0 + -"~:- + " ~ ' "  = U (2.4) 

Here, h0 = h(x, 0), Po = p(x,  0). It follows from the impermeability condition *U[r ° = 0 that 

Uz.,,(x,0) =0, m >I 0 (2.5) 

Suppose thatp0 ~ 0 in F0. IfX is a domain on a sphere which is symmetrical about the axis of rotation, 
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then this means that F0 does not intersect with the equator. On expressing the functions Uj. 0 from Eqs 
(2.3) in terms of ~0 and substituting into (2.4) and (2.5), we obtain 

aa;° i P~ d"~(h°)O~-~-° Pg;o=O (2.6) 
~p2 ~oho ax t, p0) ~P h0 

340 (x,0)- i ~° ~-~-~° (x,0)= 0 (2.7) 
bx Po op 

For sufficiently large 60, the characteristic polynomial of Eq. (2.6) has a root ~t = g(x) with a negative 
real part. The corresponding solution of Eq. (2.6), which decays exponentially as 9 ~ +0% has the form 

= a0(x)exp(g9). On substituting this expression into (2.7), we obtain an ordinary first-order differential 
equation for a0 = a0(x). The condition of the/-periodicity of the function a0 leads to the relations 

sign(p0)! 4h~ ,~x~0)  J dx=2gk (2.8) 

where k is an integer. Equation (2.8) has a unique solution 50 = ~5o(k) for any sufficiently large k 
(signk = signp0). 

The corrections (Ulm, Uz¢,,, (-~), 5m, m >I 1 are determined using the same scheme. 
Using the well-known estimate of the distance to the spectrum I; of a self-adjoint operator 

dist(Z,;Z(k)) ~< H 
and following the well-known approach [9, p. 188], we deduce that the distance from the quantity ~N = 
a-1/2(50 + 61et -1/2 + . . .  + 5N a-N/2) to Y~(R) is of the order of a -(N+~)/2. By virtue of the discreteness of 
the spectrum, this means that a denumerable set of eigenvalues k k = ~.k(a) exists, the asymptotic form 
of which is determined by the first formula of (2.2) and the coefficient 60(k) is calculated using formula 
(2.8). 

Elementary analysis of the approximate solution which has been constructed shows that waves 
exp (i~kt)~o, where t is the time, propagate along the boundary while the domain remains to the left if 
sign(p0) > 0 (the northern hemisphere in the case of a sphere) and to the right if sign(p0) < 0 (the 
southern hemisphere). When h0 ~- P0 -= 1 the principal term of the asymptotic form for their velocity 

• - 1 / 2  . . . . . .  of propagataon dx/dt - c~ m dimensioned variables is the same as the velocxty of the long waves ,/(g.h.). 
Both of these properties are characteristic of Kelvin waves [10, 11]. 

We note that the compactness of the surface X does not play any role in the formal algorithm which 
has been described. Without considering issues concerning the substantiation of the asymptotic form 
of the spectrum in the case of a non-compact surface, we note that formula (2.8) for the exterior of a 
circle (when h --- p -- 1) has been obtained earlier [12]. 

3. THE A S Y M P T O T I C  FORM OF THE kth E I G E N V A L U E  IN 
THE CASE OF A PLANAR,  SIMPLY C O N N E C T E D  R E S E R V O I R  

OF CONSTANT D E P T H  

Suppose X is a planar, simply connected, boundary domain, 1 is the length of its boundary and 
h --- p -- 1. It turns out that, in this case, the formulae which have been obtained determine the asymptotic 
form of the kth eigenvalue in the ordered sequence 

0 < Z, I ~< Z,2 ~< ... Z,k ~< ... ( 3 . 1 )  

of eigenvalues of the operator .R, that is 

(3.2) 
n l = l  

The scheme for the proof of this assertion is as follows. Suppose the boundaries of the unit circle 
X0 = {(x,y) :x z + y2 < 1} and of the domain X are connected by a smooth homotopy [13] and that 
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e e [0, T] is the parameter of the homotopy and the boundaries of the domains X(e) obtained in the 
homotopy process have a length l(e). We denote the eigenvalues (3.1), corresponding to a domain X(e), 
by ;~k(tX; e) and we denote by ~ = V(z; ~, ~1), z = x + iy, the family of conformal mappings of the domain 
X(el) onto X(e), selected in such a way that 

:i(e,e~)= min 2, = max ]~(z;e,e~)l  2 
z~X(et ) z~X(el) 

are continuous functions of e andj~(el, c1) = 1,j = 1, 2. 
On analysing the known solution [1], we find the principal term of the asymptotic form (3.2) in the 

case of a unit circle. It follows from the result obtained and the inequality 

~,k (ctf2 (e, e I ); e 1 ) ~< ~'k (0t; e) ~< ~'k (txfl (e, e I ); e I ) (3.3) 

which is derived using variational methods, that the bounded functions 

Fi.k(e) = lima_.}**ot~,k(a;e), F2.k(e) --- li__~a_~**aY:~k(ot;e) 

are defined. 
Starting from the fact, established in the previous section, that an eigenvalue with the asymptotic 

form (3.2) exists and inequalities (3.3), it can be shown that the set 

D~ = {e e [0,T] : Fl,~(e)= Fa.k (g) = 27tk / /(e)} 

is open and closed in [0, 7]. Since Dk is not empty: 0 e Dk, it then follows from this that D~ = [0, T]. 
Thus, the formula has been proved for the leading term of the asymptotic form of ~.~. The existence 

of an eigenvalue with the asymptotic form (3.2) shows that the complete expansion holds. 
Note  that the asymptotic form of a number of eigenvalues in a fixed interval (0, ~.), when a ---) ~ ,  

have been found earlier in [5]. A detailed account of these and other results is availableA- 
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